login
A189120
Sum of squares of nonprime divisors of n.
2
1, 1, 1, 17, 1, 37, 1, 81, 82, 101, 1, 197, 1, 197, 226, 337, 1, 442, 1, 517, 442, 485, 1, 837, 626, 677, 811, 997, 1, 1262, 1, 1361, 1090, 1157, 1226, 1898, 1, 1445, 1522, 2181, 1, 2438, 1, 2437, 2332, 2117, 1, 3397, 2402, 3226, 2602, 3397, 1, 4087, 3026, 4197, 3250, 3365
OFFSET
1,4
COMMENTS
a(p) = 1 for p prime.
LINKS
FORMULA
a(n) = Sum_{k|n, k not prime} k^2.
G.f.: Sum_{k>=1} k^2*x^(k+1)/(1 - x^k) - prime(k)^2*x^(prime(k)+1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = A001157(n) - A005063(n). - Wesley Ivan Hurt, Sep 04 2022
EXAMPLE
a(12) = 197 because the divisors of 12 are {1, 2, 3, 4, 6, 12}, the subset of nonprime divisors are {1, 4, 6, 12}, and 1^2 + 4^2 + 6^2 + 12^2 = 197.
MAPLE
A189120 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d^2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 17 2011
MATHEMATICA
Table[Total[Select[Divisors[n], ! PrimeQ[#] &]^2], {n, 50}]
CROSSREFS
Cf. A023890 (sum of the nonprime divisors of n).
Sequence in context: A124517 A241121 A040305 * A102292 A264439 A279363
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 17 2011
STATUS
approved