login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187507
T(n,k)=Number of n-step S, E, and NW-moving king's tours on a kXk board summed over all starting positions
9
1, 4, 0, 9, 5, 0, 16, 16, 6, 0, 25, 33, 31, 2, 0, 36, 56, 74, 36, 0, 0, 49, 85, 135, 115, 40, 0, 0, 64, 120, 214, 236, 184, 36, 0, 0, 81, 161, 311, 399, 435, 272, 20, 0, 0, 100, 208, 426, 604, 788, 772, 330, 12, 0, 0, 121, 261, 559, 851, 1243, 1525, 1224, 390, 6, 0, 0, 144, 320, 710
OFFSET
1,2
COMMENTS
Table starts
.1.4..9..16...25....36....49....64....81....100....121....144....169....196
.0.5.16..33...56....85...120...161...208....261....320....385....456....533
.0.6.31..74..135...214...311...426...559....710....879...1066...1271...1494
.0.2.36.115..236...399...604...851..1140...1471...1844...2259...2716...3215
.0.0.40.184..435...788..1243..1800..2459...3220...4083...5048...6115...7284
.0.0.36.272..772..1525..2524..3769..5260...6997...8980..11209..13684..16405
.0.0.20.330.1224..2726..4807..7458.10679..14470..18831..23762..29263..35334
.0.0.12.390.1910..4880..9250.14969.22026..30421..40154..51225..63634..77381
.0.0..6.450.2872..8522.17564.29834.45255..63814..85511.110346.138319.169430
.0.0..0.398.3868.13796.31548.56952.89684.129637.176796.231161.292732.361509
LINKS
FORMULA
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 4*k + 1
Empirical: T(3,k) = 9*k^2 - 20*k + 10 for k>1
Empirical: T(4,k) = 21*k^2 - 68*k + 51 for k>2
Empirical: T(5,k) = 51*k^2 - 208*k + 200 for k>3
Empirical: T(6,k) = 123*k^2 - 600*k + 697 for k>4
Empirical: T(7,k) = 285*k^2 - 1624*k + 2210 for k>5
Empirical: T(8,k) = 669*k^2 - 4316*k + 6681 for k>6
Empirical: T(9,k) = 1569*k^2 - 11252*k + 19434 for k>7
Empirical: T(10,k) = 3603*k^2 - 28504*k + 54377 for k>8
EXAMPLE
Some n=4 solutions for 4X4
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....2..3..4..0
..0..4..2..0....0..3..4..0....3..0..0..0....3..1..0..0....0..1..0..0
..0..0..3..1....0..1..2..0....4..0..0..0....4..2..0..0....0..0..0..0
CROSSREFS
Row 2 is A045944(n-1)
Sequence in context: A330422 A035102 A242015 * A187857 A215499 A190262
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 10 2011
STATUS
approved