login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187505
Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,3,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).
4
0, 1, 0, 1, 1, 1, 2, 3, 3, 6, 8, 9, 17, 23, 26, 49, 66, 75, 141, 190, 216, 406, 547, 622, 1169, 1575, 1791, 3366, 4535, 5157, 9692, 13058, 14849, 27907, 37599, 42756, 80355, 108262, 123111, 231373, 311728, 354484, 666212, 897585, 1020696
OFFSET
0,7
COMMENTS
(Start) See A187506 for supporting theory. Define the matrix
U_3=
(0 0 0 1)
(0 0 1 1)
(0 1 1 1)
(1 1 1 1).
2. Let r>=0 and M=(m_(i,j))=(U_3)^r, i,j=1,2,3,4. Let C_r be the r-th "block" defined by C_r={a(3*r-1),a(3*r),a(3*r+1),a(3*r+2)} with a(-1)=0. Note that C_r-2*C_(r-1)-3*C_(r-2)+C_(r-3)+C_(r-4)={0,0,0,0}, for r>=4. Let p={p_1,p_2,p_3,p_4}={-1,0,1,2} and n=3*r+p_i. Then a(n)=a(3*r+p_i)=m_(i,3), where M=(m_(i,j))=(U_3)^r was defined above. Hence the block C_r corresponds component-wise to the third column of M, and a(3*r+p_i)=m_(i,3) gives the quantity of H_(9,3,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)
Since a(3*r+2)=a(3*(r+1)-1) for all r, this sequence arises by concatenation of third-column entries m_(2,3), m_(3,3) and m_(4,3) of M=(U_3)^r.
FORMULA
Recurrence: a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12), for n>=12, with initial conditions {a(k)}={0,1,0,1,1,1,2,3,3,6,8,9}, k=0,1,...,11.
G.f.: x*(1+x^2-x^3+x^4-2*x^6+x^7-x^8)/(1-2*x^3-3*x^6+x^9+x^12).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 14 2011
STATUS
approved