login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187502
Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-2,0,1,2}, n=3*r+p_i, and define a(-2)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,4,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^2-1) with x=2*cos(Pi/9).
3
0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 6, 7, 12, 15, 18, 30, 39, 45, 75, 99, 114, 189, 252, 288, 477, 639, 729, 1206, 1620, 1845, 3051, 4104, 4671, 7722, 10395, 11826, 19548, 26325, 29943, 49491, 66663, 75816, 125307, 168804, 191970, 317277
OFFSET
0,7
COMMENTS
Theory. (Start)
1. Definitions. Let T_(9,j,0) denote the rhombus with sides of unit length (=1), interior angles given by the pair (j*Pi/9,(9-j)*Pi/9) and Area(T_(9,j,0))=sin(j*Pi/9), j in {1,2,3,4}. Associated with T_(9,j,0) are its angle coefficients (j, 9-j) in which one coefficient is even while the other is odd. A half-tile is created by cutting T_(9,j,0) along a line extending between its two corners with even angle coefficient; let H_(9,j,0) denote this half-tile. Similarly, a T_(9,j,r) tile is a linearly scaled version of T_(9,j,0) with sides of length Q^r and Area(T_(9,j,r))=Q^(2*r)*sin(j*Pi/9), r>=0 an integer, where Q is the positive, constant square root Q=sqrt(x^2-1) with x=2*cos(Pi/9); likewise let H_(9,j,r) denote the corresponding half-tile. Often H_(9,i,r) (i in {1,2,3,4}) can be subdivided into an integral number of each equivalence class H_(9,j,0). But regardless of whether or not H_(9,j,r) subdivides, in theory such a proposed subdivision for each j can be represented by the matrix M=(m_(i,j)), i,j=1,2,3,4, in which the entry m_(i,j) gives the quantity of H_(9,j,0) tiles that should be present in a subdivided H_(9,i,r) tile. The number Q^(2*r) (the square of the scaling factor) is an eigenvalue of M=(U_2)^r, where
U_2=
(0 0 1 0)
(0 1 0 1)
(1 0 1 1)
(0 1 1 1).
2. The sequence. Let r>=0, and let D_r be the r-th "block" defined by D_r={a(3*r-2),a(3*r),a(3*r+1),a(3*r+2)} with a(-2)=0. Note that D_r-3*D_(r-1)+3*D_(r-3)={0,0,0,0}, for r>=4, with initial conditions {D_k}={{0,0,0,1},{0,1,1,1},{1,2,2,3},{2,5,6,7}}, k=0,1,2,3. Let p={p_1,p_2,p_3,p_4}={-2,0,1,2} and n=3*r+p_i. Then a(n)=a(3*r+p_i)=m_(i,4), where M=(m_(i,j))=(U_2)^r was defined above. Hence the block D_r corresponds component-wise to the fourth column of M, and a(3*r+p_i)=m_(i,4) gives the quantity of H_(9,4,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)
Combining blocks A_r, B_r, C_r and D_r, from A187499, A187500, A187501 and this sequence, respectively, as matrix columns [A_r,B_r,C_r,D_r] generates the matrix (U_2)^r, which is singular for all r>0, that is, the four sequences are strictly causal.
Since U_2 is symmetric, so is M=(U_2)^r, so the block D_r also corresponds to the fourth row of M. Therefore, alternatively, for j=1,2,3,4, a(3r+p_j)=m_(4,j) gives the quantity of H_(9,j,0) tiles that should be present in a H_(9,4,r) tile.
Since a(3*r+1)=a(3*(r+1)-2) for all r, this sequence arises by concatenation of fourth-column entries m_(2,4), m_(3,4) and m_(4,4) (or fourth-row entries m_(4,2), m_(4,3) and m_(4,4)) from successive matrices M=(U_2)^r.
REFERENCES
L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
FORMULA
Recurrence: a(n)=3*a(n-3)-3*a(n-9), for n>=12, with initial conditions {a(m)}={0,0,1,1,1,1,2,2,3,5,6,7}, m=0,1,...,11.
G.f.: x^2*(1+x+x^2-2*x^3-x^4-x^5-x^7+x^9)/(1-3*x^3+3*x^9).
MATHEMATICA
Join[{0, 0, 1}, LinearRecurrence[{0, 0, 3, 0, 0, 0, 0, 0, -3}, {1, 1, 1, 2, 2, 3, 5, 6, 7}, 50]] (* Harvey P. Dale, Mar 29 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 15 2011
STATUS
approved