login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186500
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-4+5j^2. Complement of A186499.
6
2, 6, 9, 12, 16, 19, 22, 25, 29, 32, 35, 38, 42, 45, 48, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 84, 87, 90, 93, 97, 100, 103, 106, 110, 113, 116, 119, 122, 126, 129, 132, 135, 139, 142, 145, 148, 152, 155, 158, 161, 165, 168, 171, 174, 177, 181, 184, 187, 190, 194, 197, 200, 203, 207, 210, 213, 216, 220, 223, 226, 229, 232, 236, 239, 242, 245, 249, 252, 255, 258, 262, 265
OFFSET
1,1
COMMENTS
See A186219 for a discussion of adjusted joint rank sequences.
The pairs (i,j) for which i^2=-4+5j^2 are (L(2h-2),F(2h-1)), where L=A000032 (Lucas numbers) and F=A000045 (Fibonacci numbers).
FORMULA
a(n)=n+floor((1/10)(sqrt(2n^2+7)))=A186499(n).
b(n)=n+floor(sqrt(5n^2-7/2))=A186500(n).
EXAMPLE
First, write
1..4..9..16..25..36..49..... (i^2)
1........16........41........(-4+5j^2)
Then replace each number by its rank, where ties are settled by ranking i^2 before -4+5j^2:
a=(1,3,4,5,7,8,10,11,13,14,15,17,18...)=A186499
b=(2,6,9,12,16,19,22,25,29,32,35,38,.)=A186500.
MATHEMATICA
(See A186499.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 22 2011
STATUS
approved