login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186271
a(n)=Product{k=0..n, A001333(k)}.
0
1, 1, 3, 21, 357, 14637, 1449063, 346326057, 199830134889, 278363377900377, 936136039878967851, 7600488507777339982269, 148977175240943640992454669, 7049748909576694035403947391749, 805384464676770256686653161875581007
OFFSET
0,3
COMMENTS
a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), Pell(j+1),
Pell(i+1)))_{0<=i,j<=n}, where Pell(n)=A000129(n).
FORMULA
a(n)=Product{k=0..n, sum{j=0..floor(k/2), binomial(k,2j)*2^j}}.
a(n) ~ c * (1+sqrt(2))^(n*(n+1)/2) / 2^(n+1), where c = 1.6982679851338713863950411843311686297311132648098280324748781109134... . - Vaclav Kotesovec, Jul 11 2015
EXAMPLE
a(3)=21 since det[1, 1, 1, 1; 1, 2, 2, 2; 1, 2, 5, 5; 1, 2, 5, 12]=21.
MATHEMATICA
Table[Product[Sum[Binomial[k, 2*j]*2^j, {j, 0, Floor[k/2]}], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *)
Table[FullSimplify[Product[((1+Sqrt[2])^k + (1-Sqrt[2])^k)/2, {k, 0, n}]], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *)
CROSSREFS
Cf. A186269.
Sequence in context: A376619 A052445 A351130 * A320949 A361056 A101389
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 16 2011
STATUS
approved