login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X7 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1

%I #5 Mar 31 2012 12:36:04

%S 531218757,22408644868,558643720724,10064164793382,142701733009836,

%T 1673362343532954,16772871828446212,147158108517530586,

%U 1150403958641999830,8124467805846398491,52406651424326402992

%N Number of (n+2)X7 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order

%C Column 5 of A186096

%H R. H. Hardin, <a href="/A186092/b186092.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = (2857/17099057289994590455733180506023932559946950901760000000000)*n^50

%F + (8908893143/55298351275842505533841105756481397898868439216291840000000000)*n^49

%F + (3708960173/49066860049549694351234344060764328215499946065920000000000)*n^48

%F + (71455317095633/3103478898134018167715572261843343759630371588669440000000000)*n^47

%F + (8901338963479/1737670155730133352584306977515869966198416343040000000000)*n^46

%F + (569213582908261/637985177949227704330470194643507813676713246720000000000)*n^45

%F + (245732342773227599/1913955533847683112991410583930523441030139740160000000000)*n^44

%F + (156662680622616323/9769826497520988180072829913111568366950154240000000000)*n^43

%F + (2000663277307287301/1103568441580443847582977465268416360386396160000000000)*n^42

%F + (11804106967729455061/62093364999411162779604870168555396236574720000000000)*n^41

%F + (27193467773722184461/1469376367171201636919778746953044842250240000000000)*n^40

%F + (40672343099488116508871/24673278165416427486611284792586544642785280000000000)*n^39

%F + (1523651931957626288347/11534959404121751980650437023182115307520000000000)*n^38

%F + (5646510121079431057955021897/599950237495915236779705977588157032892989440000000000)*n^37

%F + (59729286276590414734014893/100713486233996178744285039044511840337920000000000)*n^36

%F + (38241142794004356148960585781/1158205091690956055559277949011886163886080000000000)*n^35

%F + (7535505215922304349394236372077/4632820366763824222237111796047544655544320000000000)*n^34

%F + (643941369531830743262045020169/9057322320163879222359944860308005191680000000000)*n^33

%F + (1341445908580777928622117929430323/484978440597865896542727956611037732536320000000000)*n^32

%F + (2691114781045866285553369168085824391/28007504944526755525342539494287429053972480000000000)*n^31

%F + (8387531135037793687154491396300183/2805800936137723454752809005638892912640000000000)*n^30

%F + (21560764406825866619127261521982165767/258133686124670557837258428518778147962880000000000)*n^29

%F + (1741673494518706995944987100414662083/828853103569373562788907420903517716480000000000)*n^28

%F + (39011531007906217995956773095471768547/817717459113285392192251801958917079040000000000)*n^27

%F + (31970258811937070554618775685165501893611/32637592498521564784021180617316777328640000000000)*n^26

%F + (33795679871976737565724589080327550037091289/1854583197268931269492027086842823935262720000000000)*n^25

%F + (1385648404852772677931417216371398537602510027/4503987764795975940194922925189715271352320000000000)*n^24

%F + (2625772982811930994808663356076051071225741/556322599406617581545815578704263249920000000000)*n^23

%F + (386411834865780478386517674018520333177464503/5866674684651603587210418829972230635520000000000)*n^22

%F + (8996815428642328107347007026181444245000799119/10755570255194606576552434521615756165120000000000)*n^21

%F + (119375691195188807023942009397811972619393784971/12348988070778992736041684080373645967360000000000)*n^20

%F + (203448958836057328080623836447144113921547962821/2002825010335151281846577480998815006720000000000)*n^19

%F + (398595300957144373493090805585572814458119940207/411294421765254281093493589847970938880000000000)*n^18

%F + (303128137224684662233045843297749641246142003156503/36193909115342376736227435906621442621440000000000)*n^17

%F + (7912190892289398114385846454320503526979267453801/121049863262014637913804133466961346560000000000)*n^16

%F + (346095728574105469317423052836238175952728388549029/754039773236299515338071581387946721280000000000)*n^15

%F + (44368391758850563806010176073889480837714183543929183/15364926393771552442975777441035552030720000000000)*n^14

%F + (607123137130688794221177534331829215555764276998781229/37481108324200302171501517697071573893120000000000)*n^13

%F + (13074272807517023449705296797965433433729256163503147/162255880191343299443729513840136683520000000000)*n^12

%F + (1545417383225424592462068908471462473019627501601097/4374545789472490916375060422160547840000000000)*n^11

%F + (1169109013946197045081580793847394486641703266240937/862778272569984767604249324913950720000000000)*n^10

%F + (5612221849435119635973902960028754447121501585466439/1245530398391473108134565814642933760000000000)*n^9

%F + (49677710792893294327970295779876458150831454490139/3869619283540171031690116921688064000000000)*n^8

%F + (4207159705656663707843409986685769445226609952471359643/136319496316618313295275595017124357734400000000)*n^7

%F + (130863117021586417609123530783748878217551082803353677/2132890078423279731830842643125074984960000000)*n^6

%F + (249416077519984986748189783879429270952494006801499/2539154855265809204560526956101279744000000)*n^5

%F + (6445872172191324903037680358774267317211070033/52795154128175502386413603960627200000)*n^4

%F + (6128879188310547850073420061888775714861651/55110149016633414374869667589120000)*n^3

%F + (52748674883300003732112011814165593831/790142551668533247132940992000)*n^2

%F + (2179110973646842561918017241/103301483474866556880)*n

%F + 464483

%e Some solutions for 4X7

%e ..0..0..0..0..0..0..0....0..0..0..0..0..2..2....0..0..0..0..0..0..3

%e ..0..0..0..0..0..0..4....0..0..0..0..0..2..2....0..0..0..0..0..1..4

%e ..0..0..0..0..1..2..0....0..0..0..0..0..3..3....0..0..0..0..1..3..2

%e ..0..0..0..0..2..3..1....0..0..0..0..1..1..4....0..0..0..0..1..4..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 12 2011