login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186092
Number of (n+2)X7 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1
531218757, 22408644868, 558643720724, 10064164793382, 142701733009836, 1673362343532954, 16772871828446212, 147158108517530586, 1150403958641999830, 8124467805846398491, 52406651424326402992
OFFSET
1,1
COMMENTS
Column 5 of A186096
LINKS
FORMULA
Empirical: a(n) = (2857/17099057289994590455733180506023932559946950901760000000000)*n^50
+ (8908893143/55298351275842505533841105756481397898868439216291840000000000)*n^49
+ (3708960173/49066860049549694351234344060764328215499946065920000000000)*n^48
+ (71455317095633/3103478898134018167715572261843343759630371588669440000000000)*n^47
+ (8901338963479/1737670155730133352584306977515869966198416343040000000000)*n^46
+ (569213582908261/637985177949227704330470194643507813676713246720000000000)*n^45
+ (245732342773227599/1913955533847683112991410583930523441030139740160000000000)*n^44
+ (156662680622616323/9769826497520988180072829913111568366950154240000000000)*n^43
+ (2000663277307287301/1103568441580443847582977465268416360386396160000000000)*n^42
+ (11804106967729455061/62093364999411162779604870168555396236574720000000000)*n^41
+ (27193467773722184461/1469376367171201636919778746953044842250240000000000)*n^40
+ (40672343099488116508871/24673278165416427486611284792586544642785280000000000)*n^39
+ (1523651931957626288347/11534959404121751980650437023182115307520000000000)*n^38
+ (5646510121079431057955021897/599950237495915236779705977588157032892989440000000000)*n^37
+ (59729286276590414734014893/100713486233996178744285039044511840337920000000000)*n^36
+ (38241142794004356148960585781/1158205091690956055559277949011886163886080000000000)*n^35
+ (7535505215922304349394236372077/4632820366763824222237111796047544655544320000000000)*n^34
+ (643941369531830743262045020169/9057322320163879222359944860308005191680000000000)*n^33
+ (1341445908580777928622117929430323/484978440597865896542727956611037732536320000000000)*n^32
+ (2691114781045866285553369168085824391/28007504944526755525342539494287429053972480000000000)*n^31
+ (8387531135037793687154491396300183/2805800936137723454752809005638892912640000000000)*n^30
+ (21560764406825866619127261521982165767/258133686124670557837258428518778147962880000000000)*n^29
+ (1741673494518706995944987100414662083/828853103569373562788907420903517716480000000000)*n^28
+ (39011531007906217995956773095471768547/817717459113285392192251801958917079040000000000)*n^27
+ (31970258811937070554618775685165501893611/32637592498521564784021180617316777328640000000000)*n^26
+ (33795679871976737565724589080327550037091289/1854583197268931269492027086842823935262720000000000)*n^25
+ (1385648404852772677931417216371398537602510027/4503987764795975940194922925189715271352320000000000)*n^24
+ (2625772982811930994808663356076051071225741/556322599406617581545815578704263249920000000000)*n^23
+ (386411834865780478386517674018520333177464503/5866674684651603587210418829972230635520000000000)*n^22
+ (8996815428642328107347007026181444245000799119/10755570255194606576552434521615756165120000000000)*n^21
+ (119375691195188807023942009397811972619393784971/12348988070778992736041684080373645967360000000000)*n^20
+ (203448958836057328080623836447144113921547962821/2002825010335151281846577480998815006720000000000)*n^19
+ (398595300957144373493090805585572814458119940207/411294421765254281093493589847970938880000000000)*n^18
+ (303128137224684662233045843297749641246142003156503/36193909115342376736227435906621442621440000000000)*n^17
+ (7912190892289398114385846454320503526979267453801/121049863262014637913804133466961346560000000000)*n^16
+ (346095728574105469317423052836238175952728388549029/754039773236299515338071581387946721280000000000)*n^15
+ (44368391758850563806010176073889480837714183543929183/15364926393771552442975777441035552030720000000000)*n^14
+ (607123137130688794221177534331829215555764276998781229/37481108324200302171501517697071573893120000000000)*n^13
+ (13074272807517023449705296797965433433729256163503147/162255880191343299443729513840136683520000000000)*n^12
+ (1545417383225424592462068908471462473019627501601097/4374545789472490916375060422160547840000000000)*n^11
+ (1169109013946197045081580793847394486641703266240937/862778272569984767604249324913950720000000000)*n^10
+ (5612221849435119635973902960028754447121501585466439/1245530398391473108134565814642933760000000000)*n^9
+ (49677710792893294327970295779876458150831454490139/3869619283540171031690116921688064000000000)*n^8
+ (4207159705656663707843409986685769445226609952471359643/136319496316618313295275595017124357734400000000)*n^7
+ (130863117021586417609123530783748878217551082803353677/2132890078423279731830842643125074984960000000)*n^6
+ (249416077519984986748189783879429270952494006801499/2539154855265809204560526956101279744000000)*n^5
+ (6445872172191324903037680358774267317211070033/52795154128175502386413603960627200000)*n^4
+ (6128879188310547850073420061888775714861651/55110149016633414374869667589120000)*n^3
+ (52748674883300003732112011814165593831/790142551668533247132940992000)*n^2
+ (2179110973646842561918017241/103301483474866556880)*n
+ 464483
EXAMPLE
Some solutions for 4X7
..0..0..0..0..0..0..0....0..0..0..0..0..2..2....0..0..0..0..0..0..3
..0..0..0..0..0..0..4....0..0..0..0..0..2..2....0..0..0..0..0..1..4
..0..0..0..0..1..2..0....0..0..0..0..0..3..3....0..0..0..0..1..3..2
..0..0..0..0..2..3..1....0..0..0..0..1..1..4....0..0..0..0..1..4..3
CROSSREFS
Sequence in context: A207041 A339551 A319937 * A034617 A135977 A011579
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 12 2011
STATUS
approved