OFFSET
0,17
COMMENTS
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 8 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
LINKS
Robert Israel, Table of n, a(n) for n = 0..2000
FORMULA
G.f.: Product_{m>=8} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-8) - p(n-10) - p(n-11) - 2*p(n-12) + 2*p(n-16) + p(n-17) + p(n-18) - p(n-20) - p(n-21) - p(n-23) + p(n-26) + p(n-27) - p(n-28) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185118.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(8*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
MAPLE
N:= 100: # for a(0)..a(N)
g:= mul(1/(1-x^m), m=8..N):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Dec 19 2017
MATHEMATICA
CoefficientList[Series[1/QPochhammer[x^8, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/prod(m=0, 80, 1-x^(m+8))) \\ G. C. Greubel, Nov 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
(Sage)
def A185328_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+8)) for m in (0..80)) ).list()
A185328_list(70) # G. C. Greubel, Nov 03 2019
CROSSREFS
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), this sequence (g=8), A185329 (g=9).
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Jan 31 2012
STATUS
approved