login
A185013
Characteristic function of {3}.
16
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Number of connected 2-regular (simple) graphs with girth exactly 3.
FORMULA
a(n) = A179184(n) - A185114(n).
a(n) = [n = 3], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Dec 13 2013
MAPLE
A185013:=n->1-abs(signum(3-n)); seq(A185013(n), n=0..100); # Wesley Ivan Hurt, Dec 13 2013
MATHEMATICA
Table[KroneckerDelta[n, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 13 2013 *)
PROG
(PARI) A185013(n)=n==3 \\ M. F. Hasler, Oct 30 2019
(Python)
def A185013(n): return int(n==3) # Chai Wah Wu, Feb 04 2022
CROSSREFS
The Euler transformation of this sequence is A079978.
Characteristic function of {g}: A000007 (g=0), A063524 (g=1), A185012 (g=2), this sequence (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7).
Sequence in context: A304577 A194670 A130543 * A346459 A193243 A281302
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Oct 11 2011
STATUS
approved