OFFSET
1,2
COMMENTS
This is the Beatty sequence for 1 + sqrt(2/3).
Also, a(n) is the position of 2*n^2 in the sequence obtained by arranging all the numbers in the sets {2*h^2, h >= 1} and {3*k^2, k >= 1} in increasing order. - Clark Kimberling, Oct 20 2014
Also, numbers n such that floor((n+1)*sqrt(6)) - floor(n*sqrt(6)) = 2. - Clark Kimberling, Jul 15 2015
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = n + floor(r*n), where r = sqrt(2/3).
MATHEMATICA
PROG
(Magma) [n+Floor(n*Sqrt(2/3)): n in [1..70]]; // Vincenzo Librandi, Oct 23 2014
(PARI)
main(size)={return(vector(size, n, n+floor(sqrt(2/3)*n)))} /* Anders Hellström, Jul 15 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2011
STATUS
approved