login
A182972
Numerators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.
15
1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 4, 1, 3, 1, 2, 3, 4, 5, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 1, 2, 4, 7, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3, 7, 9, 1, 2, 4, 5, 8, 10, 1, 3, 5, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 5, 7, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 3, 5, 7, 9, 11
OFFSET
1,4
COMMENTS
A023022(n) and A245677(n) give number and numerator of sum of fractions a(k)/A182973(k) such that a(k) + A182973(k) = n. - Reinhard Zumkeller, Jul 30 2014
REFERENCES
S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2
1/3
1/4 2/3
1/5
1/6 2/5 3/4
1/7 3/5
1/8 2/7 4/5
1/9 3/7
1/10 2/9 3/8 4/7 5/6
1/11 5/7
1/12 2/11 3/10 4/9 5/8 6/7
1/13 3/11 5/9
1/14 2/13 4/11 7/8
1/15 3/13 5/11 7/9
1/16 2/15 3/14 4/13 5/12 6/11 7/10 8/9
1/17 5/13 7/11
1/18 2/17 3/16 4/15 5/14 6/13 7/12 8/11 9/10
1/19 3/17 7/13 9/11
(this is A182972/A182973).
MAPLE
t1:=[];
for n from 2 to 40 do
t1:=[op(t1), 1/(n-1)];
for i from 2 to floor((n-1)/2) do
if gcd(i, n-i)=1 then t1:=[op(t1), i/(n-i)]; fi; od:
od:
t1;
MATHEMATICA
t1={}; For[n=2, n <= 40, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; t1 // Numerator // Rest (* Jean-François Alcover, Jan 20 2015, translated from Maple *)
PROG
(Pascal) program a182972;
var
num, den, n: longint;
function gcd(i, j: longint):longint;
begin
repeat
if i>j then i:=i mod j else j:=j mod i;
until (i=0) or (j=0);
if i=0 then gcd:=j else gcd:=i;
end;
begin
num:=1; den:=1; n:=0;
repeat
repeat
inc(num); dec(den);
if num>=den then
begin
inc(den, num); num:=1;
end;
until gcd(num, den)=1;
inc(n); writeln(n, ' ', num);
until n=100000;
end.
(Haskell)
a182972 n = a182972_list !! (n-1)
a182972_list = map fst $ concatMap q [3..] where
q x = [(num, den) | num <- [1 .. div x 2],
let den = x - num, gcd num den == 1]
-- Reinhard Zumkeller, Jul 29 2014
(Python)
from itertools import count, islice
from math import gcd
def A182972_gen(): # generator of terms
return (i for n in count(2) for i in range(1, 1+(n-1>>1)) if gcd(i, n-i)==1)
A182972_list = list(islice(A182972_gen(), 10)) # Chai Wah Wu, Aug 28 2023
CROSSREFS
Cf. A182973 (denominators), A366191 (interleaved).
Essentially the same as A333856.
Sequence in context: A083796 A037039 A333856 * A153452 A090680 A133771
KEYWORD
nonn,easy,frac,nice
AUTHOR
EXTENSIONS
Corrected by William Rex Marshall, Aug 12 2013
STATUS
approved