login
A182093
Partial sums of A005590.
3
0, 1, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 2, 0, 1, 0, 2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 2, -1, 0, -2, 1, 2, 0, -1, 2, 4, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 4, 3, 4, 4, 5, 6, 6, 7, 2, -2, -1, -4, 0, 1, -2, -4, 1, 4, 2, 3, 0, -2, -1, -2, 2, 5
OFFSET
0,3
COMMENTS
a(n+1) = a(n) + A005590(n+1).
LINKS
FORMULA
a(2^n) = n + 1.
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ@ n, a[(n - 1)/2 + 1] - a[(n - 1)/2], a[n/2]]; Accumulate@ Table[a@ n, {n, 0, 104}] (* after Jean-François Alcover at A005590, or *)
Table[SeriesCoefficient[(x/(1 - x)) Product[(1 + x^(2^k) - x^(2^(k + 1))), {k, 0, n}], {x, 0, n}], {n, 0, 70}] (* Michael De Vlieger, Feb 27 2017 *)
PROG
(Haskell)
a182093 n = a182093_list !! n
a182093_list = scanl1 (+) a005590_list
CROSSREFS
Cf. A005590.
Sequence in context: A306991 A239585 A321788 * A254618 A268672 A054483
KEYWORD
sign,look
AUTHOR
Reinhard Zumkeller, Apr 11 2012
STATUS
approved