OFFSET
1,1
COMMENTS
This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree on a set of integers n with density (3+2 log 2)/6 = 0.731...
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..10000
D. Brink, A (probably) exact solution to the Birthday Problem, Ramanujan Journal, 2012, pp 223-238.
MATHEMATICA
Table[Ceiling[Sqrt[2 n Log[2]]], {n, 100}] (* Vincenzo Librandi, Aug 23 2015 *)
PROG
(Magma) [Ceiling(Sqrt(2*n*Log(2))): n in [1..100]]; // Vincenzo Librandi, Aug 23 2015
(PARI) a(n) = { ceil(sqrt(2*n*log(2))) };
apply(n->a(n), vector(88, i, i)) \\ Gheorghe Coserea, Aug 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
David Brink, Apr 06 2012
STATUS
approved