OFFSET
1,4
COMMENTS
Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - Carlo Sanna, May 28 2019
R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - Md Rahil Miraj, Apr 05 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
P. Erdős, Miscellaneous problems in number theory, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1981), Congressus Numerantium 34 (1982), 25-45.
Randell Heyman and Md Rahil Miraj, On some floor function sets, arXiv:2309.16072 [math.NT], 2023-2024.
FORMULA
EXAMPLE
n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - Md Rahil Miraj, Apr 05 2024
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
Table[Length[Union[Last/@If[n==1, {}, FactorInteger[n!]]]], {n, 30}] (* Gus Wiseman, May 15 2019 *)
PROG
(PARI) a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, May 29 2002
STATUS
approved