login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179320
E.g.f. satisfies: A(x) = A( x/(1-x)^2 ) * (1-x)/(1+x) with A(0)=0.
5
0, 2, -2, 6, -28, 160, -936, 4536, -20448, 627264, -19699200, 43908480, 17788273920, -211715112960, -41219197125120, 1301670191808000, 160057006683033600, -10037518414724505600, -1007362871616478003200
OFFSET
0,2
FORMULA
E.g.f. A = A(x) satisfies:
(1) 1/(1-x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ...
(2) Catalan(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+ ...
(3) (1-x)^2/(1-3*x+x^2)^2 = 1 + 2*A + 2^2*A*Dx(A)/2! + 2^3*A*Dx(A*Dx(A))/3! + 2^4*A*Dx(A*Dx(A*Dx(A)))/4! + ...
where Dx(F) = d/dx(x*F).
INVERSION FORMULA:
More generally, if A(x) = A(G(x))*G(x)/(x*G'(x)) with G(0)=0, G'(0)=1,
then G(x) can be obtained from A=A(x) by the series:
G(x)/x = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ... where Dx(F) = d/dx(x*F).
ITERATION FORMULA:
Let G_{n}(x) denote the n-th iteration of G(x) = x/(1-x)^2, and A=A(x), then:
G_{n}(x)/x = 1 + n*A + n^2*A*Dx(A)/2! + n^3*A*Dx(A*Dx(A))/3! + n^4*A*Dx(A*Dx(A*Dx(A)))/4! + ...
MATRIX LOG OF RIORDAN ARRAY (G(x)/x, G(x)) where G(x) = x/(1-x)^2:
E.g.f. A(x) forms column 0 of A179321, the matrix log of triangle A078812, where A078812(n,k) = C(n+k+1,n-k); the g.f. of column k in A078812 is [x/(1-x)^2]^(k+1)/x.
A179321(n,k) = (k+1)*a(n-k)/(n-k)! for n>0, k>=0, where A179321 = matrix log of triangle A078812.
...
a(n) = (-1)^(n-1)*2*A027614(n), where A027614 is related to Clebsch-Gordan formulas.
a(n) = 2*n!*b(n), with a(0) = 0, where b(n) = (-1/(2*(n-1))) * Sum_{j=2..2*floor(n/2)} A123521(n, j)*b(n-j+1), and b(1) = 1. - G. C. Greubel, Sep 01 2022
EXAMPLE
E.g.f.: A(x) = 2*x - 2*x^2/2! + 6*x^3/3! - 28*x^4/4! + 160*x^5/5! - 936*x^6/6! + 4536*x^7/7! - 20448*x^8/8! + 627264*x^9/9! - 19699200*x^10/10! + 43908480*x^11/11! + 17788273920*x^12/12! -+ ...
A(x/(1-x)^2) = 2*x + 6*x^2/2! + 18*x^3/3! + 68*x^4/4! + 360*x^5/5! + 2184*x^6/6! + 13272*x^7/7! + 122016*x^8/8! + 1541376*x^9/9! + 1987200*x^10/10! - 150923520*x^11/11! + 16504093440*x^12/12! + ...
where A(x/(1-x)^2) = (1+x)/(1-x)*A(x).
...
Related expansions begin:
. A = 2*x - 2*x^2/2! + 6*x^3/3! - 28*x^4/4! + 160*x^5/5! + ...
. A*Dx(A)/2! = 8*x^2/2! - 30*x^3/3! + 180*x^4/4! - 1400*x^5/5! + ...
. A*Dx(A*Dx(A))/3! = 48*x^3/3! - 416*x^4/4! + 4280*x^5/5! + ...
. A*Dx(A*Dx(A*Dx(A)))/4! = 384*x^4/4! - 6160*x^5/5! + 98400*x^6/6! -+ ...
. A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 3840*x^5/5! - 100224*x^6/6! +- ...
where Catalan(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! +- ... = 1 - 2*x + 5*x^2 - 14*x^3 + 42*x^4 + ... + A000108(n)*(-x)^n + ...
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, 2*(n-1), T[n-2, k-2] + Binomial[2n-k-1, 2n-2k-1] ]]; (* T = A123521 *)
b[n_]:= b[n]= If[n==1, 1, (-1/(2*(n-1)))*Sum[b[n-j+1]*T[n, j], {j, 2, 2*Floor[n/2]}]];
A179320[n_] := 2*n!*b[n];
Table[A179320[n], {n, 0, 40}] (* G. C. Greubel, Sep 01 2022 *)
PROG
(PARI) /* E.g.f. satisfies: A(x) = (1-x)/(1+x)*A(x/(1-x)^2): */
{a(n)=local(A=2*x, B); for(m=2, n, B=(1-x)/(1+x+O(x^(n+3)))*subst(A, x, x/(1-x+O(x^(n+3)))^2); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); n!*polcoeff(A, n)}
(PARI) /* 1/(1-x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! +...: */
{a(n)=local(A=0+sum(m=1, n-1, a(m)*x^m/m!), D=1, R=0); R=-1/(1-x+x*O(x^n))^2+1+sum(m=1, n, (D=A*deriv(x*D+x*O(x^n)))/m!); -n!*polcoeff(R, n)}
(PARI) /* As column 0 of the matrix log of triangle A078812: */
{a(n)=local(A078812=matrix(n+1, n+1, r, c, if(r>=c, binomial(r+c-1, r-c))), LOG, ID=A078812^0); LOG=sum(m=1, n+1, -(ID-A078812)^m/m); n!*LOG[n+1, 1]}
(SageMath)
@CachedFunction
def T(n, k): # T = A123521
if (k==0): return 1
elif (k==1): return 2*(n-1)
else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
@CachedFunction
def b(n):
if (n==1): return 1
else: return (-1/(2*(n-1)))*sum(T(n, j)*b(n-j+1) for j in (2..2*floor(n/2)))
def A179320(n): return 0 if (n==0) else 2*factorial(n)*b(n)
[A179320(n) for n in (0..40)] # G. C. Greubel, Sep 01 2022
CROSSREFS
Variant: A179199.
Sequence in context: A076726 A032272 A214446 * A004304 A326907 A270487
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 11 2010
STATUS
approved