login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A (1, -2) Somos-4 sequence associated to the elliptic curve E: y^2 - 3*x*y - y = x^3 - x.
3

%I #31 Oct 23 2024 00:49:23

%S 0,1,1,2,1,-7,-16,-57,-113,670,3983,23647,140576,-833503,-14871471,

%T -147165662,-2273917871,11396432249,808162720720,14252325989831,

%U 503020937289311,23268424032702,-625775582778294689,-22086170583356766977,-1557994930804790259136,-27620103680757212617727,6783061219100782906098017,547569584492952570186575810

%N A (1, -2) Somos-4 sequence associated to the elliptic curve E: y^2 - 3*x*y - y = x^3 - x.

%C a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1+2x^2/(1+(1/4)x^2/(1-14x^2/(1-(16/49)x^2/(1-... where 0/1, -2/1, -1/4, 14/1, 16/49, ... are the x-coordinates of the multiples of z=(0, 0) on E.

%C This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 2, z = 1. - _Michael Somos_, Aug 06 2014

%H G. C. Greubel, <a href="/A178622/b178622.txt">Table of n, a(n) for n = 0..155</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.

%H Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019.

%H C. Kimberling, <a href="http://www.fq.math.ca/Scanned/17-1/kimberling1.pdf">Strong divisibility sequences and some conjectures</a>, Fib. Quart., 17 (1979), 13-17.

%F a(n) = (a(n-1)*a(n-3) - 2*a(n-2)^2)/a(n-4), n>4.

%F a(n) = -a(-n), a(n+5)*a(n) = 2*a(n+4)*a(n+1) - a(n+3)*a(n+2) for all n in Z. - _Michael Somos_, Aug 06 2014

%F a(n) = A242107(2*n) for all n in Z. - _Michael Somos_, Oct 22 2024

%e G.f. = x + x^2 + 2*x^3 + x^4 - 7*x^5 - 16*x^6 - 57*x^7 - ... - _Michael Somos_, Oct 22 2024

%t nxt[{a_,b_,c_,d_}]:={b,c,d,(d*b-2c^2)/a}; Join[{0},Transpose[ NestList[ nxt,{1,1,2,1},30]][[1]]] (* _Harvey P. Dale_, Aug 19 2015 *)

%t Join[{0}, RecurrenceTable[{a[n] == (a[n-1]*a[n-3] -2*a[n-2]^2)/a[n - 4], a[1] == 1, a[2] == 1, a[3] == 2, a[4] == 1}, a, {n, 1, 30}]] (* _G. C. Greubel_, Sep 18 2018 *)

%t a[ n_] := Which[n == 0, 0, n < 0, -a[-n], n < 5, {1, 1, 2, 1}[[n]], True, a[n] = (a[n-1]*a[n-3] - 2*a[n-2]*a[n-2])/a[n-4]]; (* _Michael Somos_, Oct 22 2024 *)

%o (PARI) {a(n) = my(E,z); E=ellinit([3, 0, 1, -1, 0]); z=ellpointtoz(E,[0,0]); -(-1)^n*round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))};

%o (PARI) m=30; v=concat([0,1,1,2,1], vector(m-5)); for(n=6, m, v[n] = ( v[n-1]*v[n-3] - 2*v[n-2]^2)/v[n-4]); v \\ _G. C. Greubel_, Sep 18 2018

%o (Magma) I:=[0, 1, 1, 2, 1]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)-2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Aug 07 2014

%Y Cf. A242107.

%K easy,sign

%O 0,4

%A _Paul Barry_, May 31 2010

%E Added missing a(0)=0.

%E More terms from _Vincenzo Librandi_, Aug 07 2014