login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178622
A (1, -2) Somos-4 sequence associated to the elliptic curve E: y^2 - 3*x*y - y = x^3 - x.
3
0, 1, 1, 2, 1, -7, -16, -57, -113, 670, 3983, 23647, 140576, -833503, -14871471, -147165662, -2273917871, 11396432249, 808162720720, 14252325989831, 503020937289311, 23268424032702, -625775582778294689, -22086170583356766977, -1557994930804790259136, -27620103680757212617727, 6783061219100782906098017, 547569584492952570186575810
OFFSET
0,4
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1+2x^2/(1+(1/4)x^2/(1-14x^2/(1-(16/49)x^2/(1-... where 0/1, -2/1, -1/4, 14/1, 16/49, ... are the x-coordinates of the multiples of z=(0, 0) on E.
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 2, z = 1. - Michael Somos, Aug 06 2014
LINKS
FORMULA
a(n) = (a(n-1)*a(n-3) - 2*a(n-2)^2)/a(n-4), n>4.
a(n) = -a(-n), a(n+5)*a(n) = 2*a(n+4)*a(n+1) - a(n+3)*a(n+2) for all n in Z. - Michael Somos, Aug 06 2014
a(n) = A242107(2*n) for all n in Z. - Michael Somos, Oct 22 2024
EXAMPLE
G.f. = x + x^2 + 2*x^3 + x^4 - 7*x^5 - 16*x^6 - 57*x^7 - ... - Michael Somos, Oct 22 2024
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b-2c^2)/a}; Join[{0}, Transpose[ NestList[ nxt, {1, 1, 2, 1}, 30]][[1]]] (* Harvey P. Dale, Aug 19 2015 *)
Join[{0}, RecurrenceTable[{a[n] == (a[n-1]*a[n-3] -2*a[n-2]^2)/a[n - 4], a[1] == 1, a[2] == 1, a[3] == 2, a[4] == 1}, a, {n, 1, 30}]] (* G. C. Greubel, Sep 18 2018 *)
a[ n_] := Which[n == 0, 0, n < 0, -a[-n], n < 5, {1, 1, 2, 1}[[n]], True, a[n] = (a[n-1]*a[n-3] - 2*a[n-2]*a[n-2])/a[n-4]]; (* Michael Somos, Oct 22 2024 *)
PROG
(PARI) {a(n) = my(E, z); E=ellinit([3, 0, 1, -1, 0]); z=ellpointtoz(E, [0, 0]); -(-1)^n*round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))};
(PARI) m=30; v=concat([0, 1, 1, 2, 1], vector(m-5)); for(n=6, m, v[n] = ( v[n-1]*v[n-3] - 2*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
(Magma) I:=[0, 1, 1, 2, 1]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)-2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2014
CROSSREFS
Cf. A242107.
Sequence in context: A113042 A305881 A184346 * A013070 A012888 A012893
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
EXTENSIONS
Added missing a(0)=0.
More terms from Vincenzo Librandi, Aug 07 2014
STATUS
approved