OFFSET
1,4
COMMENTS
Omega(.) = A001222(.) is the number of prime divisors of n (counted with multiplicity).
binomial(nk,k)= n*binomial(nk-1,k-1) ensures that all entries are integers.
Subcases for this sequence:
If n is prime, Omega(n) = 1, and a(n) = binomial (n,1) / n = 1.
If n and n+1 are products of two primes (A070552), then Omega(n) = Omega(n+1) = 2, and binomial(n*Omega(n), Omega(n)) / n = binomial(2*n, 2) / n = 2*n-1 and binomial(2*(n+1), 2) / (n+1) = 2*n+1, and we obtain two consecutive numbers of the form (x, x+2), for example (17,19), (27,29), (41,43),... at n =9, 14...
Chaining this property: If n, n+1, and n+2 are semiprimes (A056809) , we find three consecutive numbers of the form (x, x+2,x+4), for example (65, 67, 69), (169, 171, 173), at n=33, 85.
At places where Omega(n)=4, we find the subsequence A015219.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(8) = binomial(8*Omega(8),Omega(8))/8 = binomial(8*3,3)/8 = 2024/8 = 253.
MAPLE
A178034 := proc(n)
local o ;
o := numtheory[bigomega](n) ;
binomial(n*o, o)/n ;
end proc: # R. J. Mathar, Jul 08 2012
MATHEMATICA
bon[n_]:=Module[{o=PrimeOmega[n]}, Binomial[n*o, o]/n]; Array[bon, 60] (* Harvey P. Dale, Jul 22 2014 *)
PROG
(PARI) a(n)=my(b=bigomega(n)); binomial(n*b, b)/n \\ Charles R Greathouse IV, Oct 25 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 17 2010
STATUS
approved