OFFSET
0,2
COMMENTS
A generalization: Denote {a_k(n)}_(n>=0) the sequence of triangle of 2^k-nomial coefficients [read by rows: n-th row is obtained by expanding ((1+x)*(1+x^2)*...*(1+x^(2^(k-1)))^n ] mod 2 converted to decimal. Then a_k(n)=A001317((2^k-1)*n). [Proof is based on the fact (following from the Lucas theorem for the binomial coefficients) that the k-th row of Pascal triangle contains odd coefficients only iff k is Mersenne number (k=2^m-1)].
FORMULA
a(n) = A001317(7*n).
MATHEMATICA
a = Plus@@(x^Range[0, 7]); Table[FromDigits[Mod[CoefficientList[a^n, x], 2], 2], {n, 0, 15}]
PROG
(Python)
def A177897(n): return sum((bool(~(m:=7*n)&m-k)^1)<<k for k in range(7*n+1)) # Chai Wah Wu, May 03 2023
(PARI) a(n) = subst(lift(Mod(1+'x, 2)^(7*n)), 'x, 2); \\ Michel Marcus, Oct 14 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Dec 15 2010
EXTENSIONS
More terms from Michel Marcus, Oct 14 2024
STATUS
approved