login
A177847
Array T(n,m)= (n*m)!*Beta(n, m) read by antidiagonals.
1
1, 1, 1, 2, 4, 2, 6, 60, 60, 6, 24, 2016, 12096, 2016, 24, 120, 120960, 7983360, 7983360, 120960, 120, 720, 11404800, 12454041600, 149448499200, 12454041600, 11404800, 720, 5040, 1556755200, 38109367296000, 8688935743488000, 8688935743488000
OFFSET
1,4
COMMENTS
Beta(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y).
FORMULA
T(n,m) = Gamma(n*m+1)*Gamma(n)*Gamma(m)/Gamma(n+m).
T(1,m) = A000142(m-1).
T(n,m) = T(m,n).
EXAMPLE
The array starts in row n=1 as:
1, 1, 2, 6, 24, ...
1, 4, 60, 2016, 120960, ...
2, 60, 12096, 7983360, 12454041600, ...
6, 2016, 7983360, 149448499200, 8688935743488000, ...
24, 120960, 12454041600, 8688935743488000, 24620968322747596800000, ...
MAPLE
A177847 := proc(n, m) (n*m)!*Beta(n, m) ; end proc:
seq (seq (A177847(n, 1+d-n), n=1..d), d=1..10);
MATHEMATICA
t[n_, m_] = (n*m)!*Beta[n, m];
a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Cf. A060854.
Sequence in context: A154120 A361727 A261964 * A296471 A021416 A094756
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 14 2010
STATUS
approved