login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177549
Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, down, up, up.
2
1, 1, 2, 6, 24, 120, 720, 4969, 39184, 347544, 3424320, 37150741, 439774085, 5639099103, 77873192126, 1152123776419, 18181366630226, 304851804959519, 5412206888619242, 101424438933572112, 2000731009697485843, 41440364401733715980, 899211137893661967405
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.986314277283772995320277545416339641125925..., c = 1.08332315844132327949722334709840176297166... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 1, 4, 5, 1, 1][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 3, 3, 2, 6, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t>6, 0, If[u+o+t<7, (u+o)!, Sum[b[u-j, o+j-1, {1, 1, 4, 5, 1, 1}[[t]]], {j, 1, u}] + Sum[b[u+j-1, o-j, {2, 3, 3, 2, 6, 7}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 11 2016, after Alois P. Heinz *)
CROSSREFS
Column k=51 of A242784.
Sequence in context: A177538 A177550 A177536 * A177542 A177537 A177541
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 23 2013
STATUS
approved