login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177537
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, up, up.
2
1, 1, 2, 6, 24, 120, 720, 4985, 39440, 351000, 3470400, 37738800, 447766925, 5755249449, 79663786022, 1181466923370, 18690124534560, 314145239141775, 5590784473674106, 105025821614503735, 2076805450110696320, 43120601826854807940, 937944680532722764045
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.9887118103491926984294539697508784179435508781692068887..., c = 1.071215254418408841713627749833237640463228021776737... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 5, 1, 3][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 2, 6, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 5, 1, 3}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 2, 6, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=35,49 of A242784.
Sequence in context: A177536 A177549 A177542 * A177541 A177551 A177535
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 24 2013
STATUS
approved