login
A177461
The smallest k such that Fibonacci(n)+k and Fibonacci(n)-k are both prime.
3
0, 0, 0, 3, 0, 2, 3, 12, 0, 5, 0, 24, 3, 4, 0, 33, 48, 28, 57, 192, 0, 31, 12, 60, 81, 28, 0, 177, 108, 50, 345, 150, 168, 35, 6, 618, 735, 76, 18, 147, 0, 134, 111, 126, 0, 85, 642, 1146, 225, 92, 480, 219, 348, 466, 345, 72, 300, 89, 90, 312, 2025, 664, 168, 945, 276, 128
OFFSET
3,4
COMMENTS
Indices where a(n)= 0 are provided by A001605.
LINKS
FORMULA
a(n) = A047160(A000045(n)). - R. J. Mathar, Jan 23 2011
EXAMPLE
3 +- 0 -> primes, 5 +- 0 -> primes, 8 +- 3 -> primes, 13 +- 0 -> primes, 21 +- 2 -> primes, ...
MAPLE
A047160 := proc(n) for k from 0 to n-1 do if isprime(n-k) and isprime(n+k) then return k; end if; end do: return -1 ; end proc:
A177461 := proc(n) A047160(combinat[fibonacci](n)) ; end proc: # R. J. Mathar, Jan 23 2011
MATHEMATICA
f[n_] := Block[{k}, If[n==2||OddQ[n], k=0, k=1]; While[!PrimeQ[n-k] || !PrimeQ[n+k], k+=2]; k]; Table[f[Fibonacci[n]], {n, 3, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved