OFFSET
0,2
COMMENTS
Lenstra calls these numbers the harmonic numbers of Philippe de Vitry (1291-1361). De Vitry wanted to find pairs of harmonic numbers that differ by one. Levi ben Gerson, also known as Gersonides, proved in 1342 that there are only four pairs with this property of the form 2^n*3^m. See also Peterson’s story ‘Medieval Harmony’.
LINKS
Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
J. O'Connor and E.F. Robertson, Nicomachus of Gerasa, The MacTutor History of Mathematics archive, 2010.
Jay Kappraff, The Arithmetic of Nicomachus of Gerasa and its Applications to Systems of Proportion, Nexus Network Journal, vol. 2, no. 4 (October 2000).
Hendrik Lenstra, Aeternitatem Cogita, Nieuw Archief voor Wiskunde, 5/2, maart 2001, pp. 23-28.
Ivars Peterson, Medieval Harmony, Math Trek, Mathematical Association of America, 1998.
FORMULA
T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
T(n,n-k) = T(n,n-k+1) + T(n-1,n-k) for n>=1 and 1<=k<=n with T(n,n) = 2^n for n>=0.
EXAMPLE
1;
3, 2;
9, 6, 4;
27, 18, 12, 8;
81, 54, 36, 24, 16;
243, 162, 108, 72, 48, 32;
MATHEMATICA
Flatten[Table[3^(n-k) 2^k, {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, May 08 2013 *)
PROG
(Haskell)
a175840 n k = a175840_tabf !! n !! k
a175840_row n = a175840_tabf !! n
a175840_tabf = iterate (\xs@(x:_) -> x * 3 : map (* 2) xs) [1]
-- Reinhard Zumkeller, Jun 08 2013
CROSSREFS
KEYWORD
AUTHOR
Johannes W. Meijer, Sep 21 2010, Jul 13 2011, Jun 03 2012
STATUS
approved