login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175530
Pseudoprime Chebyshev numbers: odd composite integers n such that T_n(a) == a (mod n) for all integers a, where T(x) is Chebyshev polynomial of first kind.
6
7056721, 79397009999, 443372888629441, 582920080863121, 2491924062668039, 14522256850701599, 39671149333495681, 242208715337316001, 729921147126771599, 842526563598720001, 1881405190466524799, 2380296518909971201, 3188618003602886401, 33711266676317630401, 54764632857801026161, 55470688965343048319, 72631455338727028799, 122762671289519184001, 361266866679292635601, 734097107648270852639
OFFSET
1,1
COMMENTS
Odd composite integer n is a pseudoprime Chebyshev number iff the n-th term of Lucas sequence satisfies the congruence V_n(P,1) == P (mod n) for any integer P.
Odd composite integer n is a pseudoprime Chebyshev number iff n == +1 or -1 (mod p-1) and n == +1 or -1 (mod p+1) for each prime p|n.
No other terms below 10^21.
Named after the Russian mathematician Pafnuty Chebyshev (1821-1894) after whom the "Chebyshev polynomials" were also named. - Amiram Eldar, Jun 15 2021
LINKS
David Broadhurst, The second Chebyshev number, NMBRTHRY Mailing List, 4 June 2010.
Kok Seng Chua, Chebyshev polynomials and higher order Lucas Lehmer algorithm, arXiv:2010.02677 [math.NT], 2020. Mentions this sequence.
David Pokrass Jacobs, Mohamed O. Rayes, and Vilmar Trevisan, Characterization of Chebyshev Numbers, Algebra and Discrete Mathematics, Vol. 2 (2008), pp. 65-82.
Eric Weisstein's World of Mathematics, Lucas Sequence.
EXAMPLE
7056721 = 7 * 47 * 89 * 241, while 7056721 == 1 (mod 7-1), == 1 (mod 7+1), == -1 (mod 47-1), == 1 (mod 47+1), == 1 (mod 89-1), == 1 (mod 89+1), == 1 (mod 241-1), and == 1 (mod 241+1).
CROSSREFS
Terms that are Carmichael numbers (A002997) form A299799.
Contains A175531 as a subsequence.
Sequence in context: A253313 A253661 A088286 * A320623 A218099 A293586
KEYWORD
hard,nonn
AUTHOR
Max Alekseyev, Jun 08 2010
EXTENSIONS
a(1) is given in the Jacobs-Rayes-Trevisan paper.
a(2) from Kevin Acres, David Broadhurst, Ray Chandler, David Cleaver, Mike Oakes, and Christ van Willegen, Jun 04 2010
a(3)-a(20) from Max Alekseyev, Jun 08 2010, Feb 26 2018, Dec 16 2020
STATUS
approved