login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218099
Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 9.
2
7087261, 451238935, 22913136730, 1087116745385, 51075201835515, 2437976801668408, 119752042470064290, 6093096859120003590, 322215964319093498225, 17735784941946000072572, 1016521929886047797022408, 60650840653136697085038930, 3764766650086543657134295955
OFFSET
9,1
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
FORMULA
E.g.f.: t_9(x)-t_8(x), with t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else.
a(n) = A210917(n) - A210916(n).
MAPLE
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
egf:= t(9)(x)-t(8)(x):
a:= n-> n!* coeff(series(egf, x, n+1), x, n):
seq(a(n), n=9..22);
MATHEMATICA
m = 9; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 22}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Column k=9 of A135313.
Sequence in context: A088286 A175530 A320623 * A293586 A263069 A034636
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2012
STATUS
approved