login
A173676
Number of ways of writing n as a sum of seven nonnegative cubes.
12
1, 7, 21, 35, 35, 21, 7, 1, 7, 42, 105, 140, 105, 42, 7, 0, 21, 105, 210, 210, 105, 21, 0, 0, 35, 140, 210, 147, 77, 105, 140, 105, 77, 112, 105, 77, 210, 420, 420, 210, 63, 42, 21, 105, 420, 630, 420, 105, 7, 7, 0, 140, 420, 420, 161, 105, 211, 210, 105, 126, 210, 105, 105, 420, 637, 462, 210, 182, 147, 42, 217, 630, 672, 420, 420, 427, 210, 42
OFFSET
0,2
COMMENTS
Order matters. This is the coefficient of q^n in the expansion of {Sum_{m>=0} q^(m^3)}^7.
It is known that a(n)>0 if n is even and > 454.
CROSSREFS
Sums of k cubes, number of ways of writing n as, for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682.
Sequence in context: A001485 A230210 A087111 * A131893 A282248 A282349
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 24 2010
STATUS
approved