login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173336
Numbers k such that tau(phi(k)) = sigma(sopf(k)).
1
8, 9, 25, 36, 49, 54, 96, 100, 320, 441, 495, 704, 891, 1029, 1080, 1089, 1260, 1331, 1386, 1400, 1617, 1701, 1750, 1815, 1848, 1950, 1960, 2079, 2541, 2574, 2704, 2850, 2880, 3000, 3360, 3430, 3510, 3861, 4125, 4275, 4680, 4704, 4719, 4800, 5070, 5096
OFFSET
1,1
COMMENTS
tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); sigma(k) is the sum of divisors of k (A000203); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
Wacław Sierpiński, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
FORMULA
k such that A062821(k) = sigma(A008472(k)).
EXAMPLE
8 is in the sequence because phi(8) = 4, tau(4)=3, sopf(8)=2 and sigma(2) = 3 ;
9 is in the sequence because phi(9) = 6, tau(6)=4, sopf(9)=3 and sigma(3) = 4.
MAPLE
with(numtheory): for n from 1 to 18000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = sigma(t2) then print (n): else fi : od :
MATHEMATICA
sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 5100], DivisorSigma[0, EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* Amiram Eldar, Jul 09 2019 *)
PROG
(Magma) [m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+Divisors(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
(PARI) isok(n) = (n>1) && numdiv(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010
STATUS
approved