login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258400
Perfect powers m^k such that m, k and m+k are primes.
0
8, 9, 25, 32, 121, 289, 841, 1681, 2048, 3481, 5041, 10201, 11449, 18769, 22201, 32041, 36481, 38809, 51529, 57121, 72361, 78961, 96721, 120409, 131072, 175561, 185761, 212521, 271441, 323761, 358801, 380689, 410881, 434281, 654481, 674041, 683929, 734449
OFFSET
1,1
COMMENTS
Necessarily either m or k = 2, thus if a(n) is even, it is a power of 2 with odd prime exponent, otherwise (if a(n) is odd), it is a square of odd prime.
For each term m^k, there will be another k^m.
a(3), a(5), a(11) are of the form n! + 1.
Let F(m,k) = m*k, such that m^k = a(n), so A108605 is a subsequence of F. For example a(1) = 2^3 and F(2,3) = A108605(1).
EXAMPLE
a(1) = 8, because 8 = 2^3 and 2+3 = 5.
a(4) = 32, because 32 = 2^5 and 2+5 = 7.
a(5) = 121, because 121 = 11^2 and 11+2 = 13.
a(25) = 131072, because 131072 = 2^17 and 2+17 = 19.
MATHEMATICA
SmallestDivisor[n_] := If[n == 1, 1, Divisors[n][[2]]]; perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; ppl = Select[Range[200000], perfectPowerQ]; base[n_] := ppl[[n]]^(1/exp[n]); exp[n_] := SmallestDivisor[GCD @@ FactorInteger[ppl[[n]]][[All, 2]] ]; pp2l = Table[ {base[n], exp[n]}, {n, Length[ppl]}]; p[n_] := pp2l[[n]][[1]]; q[n_] := pp2l[[n]][[2]]; lt = Select[Range[Length[pp2l]], PrimeQ[p[#]] && PrimeQ[q[#]] && PrimeQ[p[#] + q[#]] &]; ppl[[lt]]
Select[Range[10^6], Length[f = FactorInteger@ #] == 1 && PrimeQ@ f[[1, 2]] && PrimeQ@ Total@ f[[1]] &] (* Giovanni Resta, Jun 23 2015 *)
CROSSREFS
Subsequence of A001597, A000961.
Sequence in context: A114130 A130100 A226230 * A173336 A277925 A173745
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(28)-a(38) from Giovanni Resta, Jun 23 2015
STATUS
approved