login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(x) satisfies: Fibonacci(x)/x = A(x)/A(x^2).
5

%I #18 Oct 08 2022 06:26:47

%S 1,1,3,4,10,14,28,42,80,122,216,338,582,920,1544,2464,4088,6552,10762,

%T 17314,28292,45606,74236,119842,194660,314502,510082,824584,1336210,

%U 2160794,3499468,5660262,9163818,14824080,23994450,38818530,62823742,101642272

%N A(x) satisfies: Fibonacci(x)/x = A(x)/A(x^2).

%H Alois P. Heinz, <a href="/A173285/b173285.txt">Table of n, a(n) for n = 0..2000</a>

%F a(n) = Sum_{k=0..n/2} A000045(n-2*k+1)*a(k). - _R. J. Mathar_, Apr 02 2010

%F Given M = triangle A173284, A173285 as a left-shifted vector = lim_{n->inf} M^n.

%F G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k + 1))). - _Ilya Gutkovskiy_, Aug 30 2017

%F a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1))) = 2.6009165618094467356830434687244547021995030468423430186926... and phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Oct 08 2022

%p A173285 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*combinat[fibonacci](n-2*l+1),l=0..n/2) ; end if; end proc:

%p seq(A173285(n),n=0..60) ; # _R. J. Mathar_, Apr 01 2010

%t a[n_] := a[n] = If[n == 0, 1, Sum[Fibonacci[n-2k+1] a[k], {k, 0, n/2}]];

%t a /@ Range[0, 40] (* _Jean-François Alcover_, Oct 02 2019 *)

%Y Cf. A000045, A173284.

%K nonn

%O 0,3

%A _Gary W. Adamson_, Feb 14 2010

%E Division through x added to definition and sequence extended by _R. J. Mathar_, Apr 22 2010