login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173285
A(x) satisfies: Fibonacci(x)/x = A(x)/A(x^2).
5
1, 1, 3, 4, 10, 14, 28, 42, 80, 122, 216, 338, 582, 920, 1544, 2464, 4088, 6552, 10762, 17314, 28292, 45606, 74236, 119842, 194660, 314502, 510082, 824584, 1336210, 2160794, 3499468, 5660262, 9163818, 14824080, 23994450, 38818530, 62823742, 101642272
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n/2} A000045(n-2*k+1)*a(k). - R. J. Mathar, Apr 02 2010
Given M = triangle A173284, A173285 as a left-shifted vector = lim_{n->inf} M^n.
G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k + 1))). - Ilya Gutkovskiy, Aug 30 2017
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1))) = 2.6009165618094467356830434687244547021995030468423430186926... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 08 2022
MAPLE
A173285 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*combinat[fibonacci](n-2*l+1), l=0..n/2) ; end if; end proc:
seq(A173285(n), n=0..60) ; # R. J. Mathar, Apr 01 2010
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Fibonacci[n-2k+1] a[k], {k, 0, n/2}]];
a /@ Range[0, 40] (* Jean-François Alcover, Oct 02 2019 *)
CROSSREFS
Sequence in context: A309478 A329805 A071019 * A025084 A134512 A106523
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 14 2010
EXTENSIONS
Division through x added to definition and sequence extended by R. J. Mathar, Apr 22 2010
STATUS
approved