Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 20 2018 15:22:50
%S 0,0,0,0,2,112,1754,13074,63400,234014,712248,1882132,4457246,9679760,
%T 19584514,37367934,67849336,118085614,198107620,321870956,508359070,
%U 782972820,1179105738,1740089734,2521359260,3593085246,5043058972
%N Number of ways to place 4 nonattacking amazons (superqueens) on an n X n board.
%C A amazon (superqueen) moves like a queen and a knight.
%H Vincenzo Librandi, <a href="/A173214/b173214.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Amazon_(chess)">Amazon (chess)</a>
%F a(n) = n^8/24-5n^7/6+47n^6/9+43n^5/10-5053n^4/24+112585n^3/108-15433n^2/8+55669n/270+119917/54 + (n^3/4-21n^2/8+7n-3/2)*(-1)^n + 32/27*(n-1)*cos(2*Pi*n/3) + 40*sqrt(3)*sin(2*Pi*n/3)/81, n>=6.
%F Recurrence: a(n) = 3a(n-1)+a(n-2)-9a(n-3)+12a(n-5)+7a(n-6)-15a(n-7)-16a(n-8)+16a(n-9)+15a(n-10)-7a(n-11)-12a(n-12)+9a(n-14)-a(n-15)-3a(n-16)+a(n-17), n>=23. - _Vaclav Kotesovec_, Feb 18 2010
%F G.f.: 2x^5*(28x^17-18x^16-162x^15-139x^14+261x^13+1268x^12+2387x^11+1220x^10-5937x^9-18637x^8-30086x^7-31557x^6-23251x^5-11716x^4-3859x^3-708x^2-53x-1)/((x+1)^4*(x-1)^9*(x^2+x+1)^2). - _Vaclav Kotesovec_, Mar 24 2010
%t CoefficientList[Series[2 x^4 (28 x^17 - 18 x^16 - 162 x^15 - 139 x^14 + 261 x^13 + 1268 x^12 + 2387 x^11 + 1220 x^10 - 5937 x^9 - 18637 x^8 - 30086 x^7 - 31557 x^6 - 23251 x^5 - 11716 x^4 - 3859 x^3 - 708 x^2 - 53 x - 1) / ((x + 1)^4 (x - 1)^9 (x^2 + x + 1)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, May 30 2013 *)
%Y Cf. A172200, A172201, A061994.
%K nonn,nice,easy
%O 1,5
%A _Vaclav Kotesovec_, Feb 12 2010