login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173214
Number of ways to place 4 nonattacking amazons (superqueens) on an n X n board.
5
0, 0, 0, 0, 2, 112, 1754, 13074, 63400, 234014, 712248, 1882132, 4457246, 9679760, 19584514, 37367934, 67849336, 118085614, 198107620, 321870956, 508359070, 782972820, 1179105738, 1740089734, 2521359260, 3593085246, 5043058972
OFFSET
1,5
COMMENTS
A amazon (superqueen) moves like a queen and a knight.
FORMULA
a(n) = n^8/24-5n^7/6+47n^6/9+43n^5/10-5053n^4/24+112585n^3/108-15433n^2/8+55669n/270+119917/54 + (n^3/4-21n^2/8+7n-3/2)*(-1)^n + 32/27*(n-1)*cos(2*Pi*n/3) + 40*sqrt(3)*sin(2*Pi*n/3)/81, n>=6.
Recurrence: a(n) = 3a(n-1)+a(n-2)-9a(n-3)+12a(n-5)+7a(n-6)-15a(n-7)-16a(n-8)+16a(n-9)+15a(n-10)-7a(n-11)-12a(n-12)+9a(n-14)-a(n-15)-3a(n-16)+a(n-17), n>=23. - Vaclav Kotesovec, Feb 18 2010
G.f.: 2x^5*(28x^17-18x^16-162x^15-139x^14+261x^13+1268x^12+2387x^11+1220x^10-5937x^9-18637x^8-30086x^7-31557x^6-23251x^5-11716x^4-3859x^3-708x^2-53x-1)/((x+1)^4*(x-1)^9*(x^2+x+1)^2). - Vaclav Kotesovec, Mar 24 2010
MATHEMATICA
CoefficientList[Series[2 x^4 (28 x^17 - 18 x^16 - 162 x^15 - 139 x^14 + 261 x^13 + 1268 x^12 + 2387 x^11 + 1220 x^10 - 5937 x^9 - 18637 x^8 - 30086 x^7 - 31557 x^6 - 23251 x^5 - 11716 x^4 - 3859 x^3 - 708 x^2 - 53 x - 1) / ((x + 1)^4 (x - 1)^9 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Vaclav Kotesovec, Feb 12 2010
STATUS
approved