login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173006
A product triangle sequence based on recursion:a=5; f(n,a)=(2*a+1)*f(n-1,a)+f(n-2,a)
0
1, 1, 1, 1, 11, 1, 1, 120, 120, 1, 1, 1309, 14280, 1309, 1, 1, 14279, 1699201, 1699201, 14279, 1, 1, 155760, 202190640, 2205562898, 202190640, 155760, 1, 1, 1699081, 24058986960, 2862818956682, 2862818956682, 24058986960, 1699081, 1, 1
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 13, 242, 16900, 3426962, 2610255700, 5773759285448, 47972252879976100,
1157507562695117906888, 104909162208463229766370000,...}.
a = 1; A034801.
a = 2; A156600.
a = 3; A156602.
This result seems to connect these new recursions directly to q-forms.
FORMULA
a=5; f(n,a)=(2*a+1)*f(n-1,a)+f(n-2,a);
c(n)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];
t(n,m)=c(n)/(c(m)*c(n-m)
EXAMPLE
{1},
{1, 1},
{1, 11, 1},
{1, 120, 120, 1},
{1, 1309, 14280, 1309, 1},
{1, 14279, 1699201, 1699201, 14279, 1},
{1, 155760, 202190640, 2205562898, 202190640, 155760, 1},
{1, 1699081, 24058986960, 2862818956682, 2862818956682, 24058986960, 1699081, 1},
{1, 18534131, 2862817257601, 3715936800366098, 40534653607660438, 3715936800366098, 2862817257601, 18534131, 1},
{1, 202176360, 340651194667560, 4823283104057937603, 573930157592104171920, 573930157592104171920, 4823283104057937603, 340651194667560, 202176360, 1},
{1, 2205405829, 40534629348182040, 6260617753130421176727, 8126277060814812179812443, 88644086770258081457215920, 8126277060814812179812443, 6260617753130421176727, 40534629348182040, 2205405829, 1}
MATHEMATICA
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = (2*a + 1)*f[n - 1, a] - f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 07 2010
STATUS
approved