login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156600
Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6, read by rows.
7
1, 1, 1, 1, -5, 1, 1, 24, 24, 1, 1, -115, 552, -115, 1, 1, 551, 12673, 12673, 551, 1, 1, -2640, 290928, -1394030, 290928, -2640, 1, 1, 12649, 6678672, 153331178, 153331178, 6678672, 12649, 1, 1, -60605, 153318529, -16865038190, 80805530806, -16865038190, 153318529, -60605, 1
OFFSET
0,5
FORMULA
T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -5, 1;
1, 24, 24, 1;
1, -115, 552, -115, 1;
1, 551, 12673, 12673, 551, 1;
1, -2640, 290928, -1394030, 290928, -2640, 1;
1, 12649, 6678672, 153331178, 153331178, 6678672, 12649, 1;
MATHEMATICA
(* First program *)
b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]];
M[d_]:= Table[b[n, k], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f= Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 6], {n, 0, 12}, {k, 0, n}]//TableForm (* modified by G. C. Greubel, Jun 25 2021 *)
(* Second program *)
t[n_, k_]:= t[n, k]= If[n==0, 1, If[k==0, (n-1)!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2 - 1]], {j, 0, n-1}]/.x->(k+1)]];
T[n_, k_, m_]:= T[n, k, m]= t[n, m]/(t[k, m]*t[n-k, m]);
Table[T[n, k, 6], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
PROG
(Sage)
@CachedFunction
def t(n, k):
if (n==0): return 1
elif (k==0): return factorial(n-1)
else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) )
def T(n, k, m): return t(n, m)/(t(k, m)*t(n-k, m))
flatten([[T(n, k, 6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 25 2021
CROSSREFS
Cf. A007318 (m=0), A034801 (m=4), A156599 (m=5), this sequence (m=6), A156601 (m=7), A156602 (m=8), A156603.
Cf. A053122.
Sequence in context: A022168 A359993 A157212 * A329118 A152572 A203346
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 11 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 25 2021
STATUS
approved