login
A172417
Triangle read by rows: Catalan number C(n) repeated n times.
4
1, 2, 2, 5, 5, 5, 14, 14, 14, 14, 42, 42, 42, 42, 42, 132, 132, 132, 132, 132, 132, 429, 429, 429, 429, 429, 429, 429, 1430, 1430, 1430, 1430, 1430, 1430, 1430, 1430, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 16796, 16796, 16796, 16796, 16796
OFFSET
1,2
COMMENTS
Read as a square array, we obtain the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )_i,j >= 1 equal to A039598 * transpose(A039598) (Cholesky factorization). See Chamberland, p. 1669. - Peter Bala, Oct 15 2023
LINKS
Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677.
FORMULA
T(n,k) = A000108(n). - R. J. Mathar, Nov 03 2016
Sum_{n>=1} 1/a(n) = 2 + 16*Pi/(27*sqrt(3)). - Amiram Eldar, Aug 18 2022
EXAMPLE
Triangle begins:
.....1
....2,2
...5,5,5
14,14,14,14
MATHEMATICA
Table[PadRight[{}, n, CatalanNumber[n]], {n, 10}]//Flatten (* Harvey P. Dale, Jun 05 2021 *)
PROG
(Python)
from math import isqrt
from sympy import catalan
def A172417(n): return catalan((m:=isqrt(k:=n<<1))+(k>m*(m+1))) # Chai Wah Wu, Nov 07 2024
CROSSREFS
Cf. A001791 (row sums), A000108, A039598, A168256, A172414.
Sequence in context: A025510 A350172 A356387 * A158106 A185313 A208301
KEYWORD
nonn,tabl,easy,less
AUTHOR
Mark Dols, Feb 02 2010
EXTENSIONS
Definition corrected by R. J. Mathar, Nov 03 2016
STATUS
approved