login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n such that the greatest part is divisible by the number of parts.
3

%I #12 Jul 11 2021 03:45:47

%S 1,1,3,2,6,9,15,22,41,68,118,199,337,571,982,1677,2860,4866,8284,

%T 14084,23911,40544,68679,116172,196249,331096,557927,939008,1578450,

%U 2650167,4444505,7445658,12460248,20830822,34790302,58049613,96771364,161182065

%N Number of compositions of n such that the greatest part is divisible by the number of parts.

%C G.f.: Sum_{n>=0} Sum_{d|n} ((x^(n+1)-x)^d-(x^n-x)^d)/(x-1)^d.

%H Alois P. Heinz, <a href="/A171632/b171632.txt">Table of n, a(n) for n = 1..250</a>

%p b:= proc(n,t,g) option remember; `if` (n=0, `if` (irem(g, t)=0, 1, 0), add (b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n,0,0): seq (a(n), n=1..40); # _Alois P. Heinz_, Dec 15 2009

%t b[n_, t_, g_] := b[n, t, g] = If[n == 0, If[Mod[g, t] == 0, 1, 0],

%t Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];

%t a[n_] := b[n, 0, 0];

%t Table [a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jul 11 2021, after _Alois P. Heinz_ *)

%Y Cf. A168659.

%K easy,nonn

%O 1,3

%A _Vladeta Jovovic_, Dec 13 2009

%E More terms from _Alois P. Heinz_, Dec 15 2009