OFFSET
2,2
COMMENTS
These are the square roots of the fifth column of the array of denominators mentioned in A171522.
LINKS
Colin Barker, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
G.f.: x^3*(-5-3*x-6*x^2+x^3+3*x^4) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 02 2011
a(n) = -(-5+3*(-1)^n)*(-4+n^2)/8. - Colin Barker, Nov 03 2014
Sum_{n>=3} 1/a(n) = 13/12. - Amiram Eldar, Aug 11 2022
MAPLE
MATHEMATICA
Table[-(-5+3*(-1)^n)*(-4+n^2)/8, {n, 0, 100}] (* G. C. Greubel, Sep 19 2018 *)
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 5, 3, 21, 8, 45}, 50] (* Harvey P. Dale, Nov 01 2019 *)
PROG
(PARI) concat(0, Vec(x^3*(-5-3*x-6*x^2+x^3+3*x^4)/((x-1)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Nov 03 2014
(Magma) [-(-5+3*(-1)^n)*(-4+n^2)/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 13 2009
STATUS
approved