login
A171233
Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.
2
2, 4, 1, 6, 2, 1, 8, 1, 1, 1, 10, 4, 2, 1, 1, 12, 1, 1, 1, 1, 1, 14, 6, 1, 2, 1, 1, 1, 16, 1, 4, 1, 1, 1, 1, 1, 18, 8, 1, 1, 2, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 22, 10, 6, 4, 1, 2, 1, 1, 1, 1, 1, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 28, 1, 8, 1, 4, 1, 1, 1
OFFSET
1,1
COMMENTS
T(n,3): continued fraction expansion of e - 1.
FORMULA
T(n,k) = A171232(n,k) + A077049(n,k).
EXAMPLE
Array begins
2 1 1 1 ...
4 2 1 1 ...
6 1 2 1 ...
8 4 1 2 ...
...........
MAPLE
A171233 := proc(n, k) if n mod k <> 0 then 1; else 2*n/k ; end if; end proc: seq(seq(A171233(d-k+1, k), k=1..d), d=1..17) ; # R. J. Mathar, Dec 08 2009
CROSSREFS
Cf. T(n,1) = A005843(n-1), A171232, A077049.
Sequence in context: A095247 A376121 A007734 * A362004 A096907 A360555
KEYWORD
cofr,nonn,tabl
AUTHOR
Ross La Haye, Dec 05 2009
EXTENSIONS
Terms beyond the 6th antidiagonal from R. J. Mathar, Dec 08 2009
STATUS
approved