login
A170800
a(n) = n^10*(n^8 + 1)/2.
7
0, 1, 131584, 193739769, 34360262656, 1907353515625, 50780008567296, 814206940192849, 9007199791611904, 75047319391891761, 500000005000000000, 2779958669714828041, 13311666671401304064, 56227703544907942489
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (19,-171,969,-3876,11628,-27132,50388,-75582,92378,-92378,75582,-50388,27132,-11628,3876,-969,171,-19,1).
FORMULA
G.f.: x*(1 + 131565*x + 191239844*x^2 + 30701706940*x^3 + 1287510524640*x^4 + 20228672856392*x^5 + 142998539385460*x^6 + 503354978422188*x^7 + 932692832164970*x^8 + 932692832164970*x^9 + 503354978422188*x^10 + 142998539385460*x^11 + 20228672856392*x^12 + 1287510524640*x^13 + 30701706940*x^14 +191239844*x^15 + 131565*x^16 + x^17)/(1-x)^19. - Harvey P. Dale, Jul 14 2013
E.g.f.: x*(2 + 131582*x + 64448340*x^2 + 2798841090*x^3 + 28958138070*x^4 + 110687273866*x^5 + 197462489280*x^6 + 189036065760*x^7 + 106175395800*x^8 + 37112163804*x^9 + 8391004908*x^10 + 1256328866*x^11 + 125854638*x^12 + 8408778*x^13 + 367200*x^14 + 9996*x^15 + 153*x^16 + x^17)*exp(x)/2. - G. C. Greubel, Oct 12 2019
MAPLE
seq(n^10*(n^8 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
MATHEMATICA
Table[n^10 (n^8+1)/2, {n, 0, 20}] (* Harvey P. Dale, Jul 14 2013 *)
PROG
(Magma)[n^10*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
(PARI) vector(21, m, (m-1)^10*((m-1)^8 + 1)/2) \\ G. C. Greubel, Oct 11 2019
(Sage) [n^10*(n^8 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
(GAP) List([0..20], n-> n^10*(n^8 +1)/2); # G. C. Greubel, Oct 11 2019
CROSSREFS
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), this sequence (m=8), A170801 (m=9), A170802 (m=10).
Sequence in context: A170791 A203892 A208488 * A204760 A178287 A234159
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved