login
A170799
a(n) = n^10*(n^7 + 1)/2.
7
0, 1, 66048, 64599606, 8590458880, 381474609375, 8463359955456, 116315398231228, 1125900443713536, 8338592593225485, 50000005000000000, 252723527218359186, 1109305584328900608, 4325208028619914891, 15245673509292925440, 49263062956171875000, 147573953139432226816
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
FORMULA
G.f.: x*(65024*x^15 + 63370125*x^14 + 7437628950*x^13 + 236677103915*x^12 + 2858645957220*x^11 + 15527824213413*x^10 + 41568614867330*x^9 + 57445190329275*x^8 + 41568608318040*x^7 + 15527828734975*x^6 + 2858646015162*x^5 + 236676197145*x^4 + 7437770500*x^3 + 63410895*x^2 + 66030*x + 1)/(x-1)^18. - Colin Barker, Feb 24 2013
E.g.f.: x*(2 + 66046*x + 21467155*x^2 + 694371395*x^3 + 5652794176*x^4 + 17505772725*x^5 + 25708110666*x^6 + 20415995778*x^7 + 9528822348*x^8 + 2758334151*x^9 + 512060978*x^10 + 62022324*x^11 + 4910178*x^12 + 249900*x^13 + 7820*x^14 + 136*x^15 + x^16)*exp(x)/2. - G. C. Greubel, Oct 12 2019
MAPLE
seq(n^10*(n^7 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
MATHEMATICA
Table[n^10(n^7+1)/2, {n, 0, 20}] (* Harvey P. Dale, Aug 27 2013 *)
PROG
(Magma)[n^10*(n^7+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
(PARI) vector(21, m, (m-1)^10*((m-1)^7 + 1)/2) \\ G. C. Greubel, Oct 11 2019
(Sage) [n^10*(n^7 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
(GAP) List([0..20], n-> n^10*(n^7 +1)/2); # G. C. Greubel, Oct 11 2019
CROSSREFS
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), this sequence (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).
Sequence in context: A170790 A043678 A032781 * A288084 A194430 A254192
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved