login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169711
The function W_n(6) (see Borwein et al. reference for definition).
4
1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
OFFSET
1,2
LINKS
Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
FORMULA
a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017
MAPLE
A169711 := proc(n)
W(n, 6) ;
end proc:
seq(A169711(n), n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
MATHEMATICA
CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 20, 93, 256}, 40] (* Harvey P. Dale, Feb 27 2023 *)
PROG
(Magma) [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
(PARI) a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.
Sequence in context: A200431 A172200 A177291 * A281391 A071092 A144359
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 17 2010
STATUS
approved