login
A169699
Total number of ON cells at stage n of two-dimensional 5-neighbor outer totalistic cellular automaton defined by "Rule 510".
17
1, 5, 12, 25, 28, 56, 56, 113, 60, 120, 120, 240, 120, 240, 240, 481, 124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985, 252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016
OFFSET
0,2
COMMENTS
We work on the square grid. Each cell has 4 neighbors, N, S, E, W. If none of your 4 neighbors are ON, your state does not change. If all 4 of your neighbors are ON, your state flips. In all other cases you turn ON. We start with one ON cell.
As observed by Packard and Wolfram (see Fig. 2), a slice along the E-W line shows the successive states of the 1-D CA Rule 126 (see A071035, A071051).
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
FORMULA
For n>0, it is easy to show that if 2^k <= n < 2^(k+1) then a(n) =
(2^(k+1)-1)*2^(1+wt(n)), where wt is the binary weight A000120, except that if n is a power of 2 we must add 1 to the result.
EXAMPLE
When arranged into blocks of sizes 1,1,2,4,8,16,...:
1,
5,
12, 25,
28, 56, 56, 113,
60, 120, 120, 240, 120, 240, 240, 481,
124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985,
252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032,
..., the initial terms in the rows (after the initial rows) have the form 2^m-4 and the final terms are given by A092440. The row beginning with 2^m-4 is divisible by 2^(m-2)-1 (see formula).
MAPLE
A000120 := proc(n) add(i, i=convert(n, base, 2)) end:
ht:=n->floor(log[2](n));
f:=proc(n) local a, t1;
if n=0 then 1 else
a:=(2^(ht(n)+1)-1)*2^(1+A000120(n));
if 2^log[2](n)=n then a:=a+1; fi; a; fi; end;
[seq(f(n), n=0..65)]; # A169699
MATHEMATICA
Map[Function[Apply[Plus, Flatten[ #1]]], CellularAutomaton[{ 510, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 100]]
ArrayPlot /@ CellularAutomaton[{510, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 28]
CROSSREFS
See A253089 for 9-celled neighborhood version.
Sequence in context: A337065 A079425 A272194 * A109624 A081501 A355947
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 17 2010
EXTENSIONS
Entry revised with more precise definition, formula and additional information, N. J. A. Sloane, Aug 24 2014
STATUS
approved