OFFSET
1,2
COMMENTS
A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n are obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.
Conjecture: a(n) >= A000108(n). - Michael Chu, May 16 2022
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
Erich Friedman, Postage stamp problem
J. Kohonen, A meet-in-the-middle algorithm for finding extremal restricted additive 2-bases, arXiv preprint arXiv:1403.5945 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.6.8.
J. Kohonen, Early Pruning in the Restricted Postage Stamp Problem, arXiv preprint arXiv:1503.03416 [math.NT], 2015.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582.
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
EXTENSIONS
a(17) from simple depth-first search by Jukka Kohonen, Jun 16 2016
a(18)-a(19) from depth-first search by Jukka Kohonen, Jul 30 2016
STATUS
approved