OFFSET
1,2
COMMENTS
Only for three cases n = 4,9,30, a(n) < (prime(n+1)-prime(n))^2 because only in these cases (prime(n+1)-prime(n))^2 > prime(n+1):
n = 4: a(4) = 5 < ((p(5)-p(4))^2 = (11-7)^2 = 16) and 16 > 11.
n = 9: a(9) = 7 < ((p(10)-p(9))^2 = (29-23)^2 = 36) and 36 > 29.
n = 30: a(30) = 69 < ((p(31)-p(30))^2 = (127-113)^2 = 196) and 196 > 127.
In all other cases, a(n) = A076821(n) = (prime(n+1)-prime(n))^2, is highly probable but not proved conjecture.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = prime(n)^2 modulo prime(n+1).
MAPLE
A167770:=n->ithprime(n)^2 mod ithprime(n+1): seq(A167770(n), n=1..70); # Wesley Ivan Hurt, Oct 01 2014
MATHEMATICA
Table[PowerMod[Prime[n], 2, Prime[n+1]], {n, 221265}]
PROG
(PARI) a(n)=prime(n)^2%prime(n+1) \\ M. F. Hasler, Oct 04 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 11 2009
STATUS
approved