OFFSET
0,2
COMMENTS
Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - Eric W. Weisstein, Dec 01 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..3000
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018
Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Maximum Clique
Index entries for linear recurrences with constant coefficients, signature (4, -4).
FORMULA
a(0)=1, a(n) = 3*n*2^(n-1) for n>0.
a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2.
a(n) = Sum_{k=0..n} A167666(n,k) * 2^k.
G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - Wesley Ivan Hurt, Mar 20 2015
MAPLE
MATHEMATICA
CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Mar 20 2015 *)
Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(PARI) Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ Michel Marcus, Mar 21 2015
(PARI) a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ Altug Alkan, May 16 2018
(Magma) [1] cat [3*n*2^(n-1): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Nov 08 2009
STATUS
approved