login
A167489
Product of run lengths in binary representation of n.
18
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 4, 2, 3, 4, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 5, 4, 3, 6, 4, 2, 4, 6, 3, 2, 1, 2, 4, 2, 3, 4, 8, 6, 4, 8, 4, 2, 4, 6, 9, 6, 3, 6, 8, 4, 5, 6, 6, 5, 4, 8, 6, 3, 6, 9, 6, 4, 2, 4, 8, 4, 6, 8, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 10, 8, 6, 12, 8, 4, 8
OFFSET
0,4
FORMULA
a(n) = A227349(n) * A227350(n) = A227355(A227352(2n+1)). - Antti Karttunen, Jul 25 2013
a(n) = A284558(n) * A284559(n) = A284582(n) * A284583(n). - Antti Karttunen, Apr 16 2017
EXAMPLE
a(56) = 9, because 56 in binary is written 111000 giving the run lengths 3,3 and 3x3 = 9.
a(99) = 12, because 99 in binary is written 1100011 giving the run lengths 2,3,2, and 2x3x2 = 12.
MATHEMATICA
Table[ Times @@ (Length /@ Split[IntegerDigits[n, 2]]), {n, 0, 100}](* Olivier GĂ©rard, Jul 05 2013 *)
PROG
(Scheme)
(define (A167489 n) (apply * (binexp->runcount1list n)))
(define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
;; Antti Karttunen, Jul 05 2013
(Haskell)
import Data.List (group)
a167489 = product . map length . group . a030308_row
-- Reinhard Zumkeller, Jul 05 2013
(Python)
def A167489(n):
'''Product of run lengths in binary representation of n.'''
p = 1
b = n%2
i = 0
while (n != 0):
n >>= 1
i += 1
if ((n%2) != b):
p *= i
i = 0
b = n%2
return(p)
# Antti Karttunen, Jul 24 2013 (Cf. Python program for A227184).
(PARI) a(n) = {my(p=1, b=n%2, i=0); while(n!=0, n=n>>1; i=i+1; if((n%2)!=b, p=p*i; i=0; b=n%2)); p} \\ Indranil Ghosh, Apr 17 2017, after the Python Program by Antti Karttunen
CROSSREFS
Row products of A101211 and A227736 (for n > 0).
Cf. A167490 (smallest number with binary run length product = n).
Cf. A167491 (members of A167490 sorted in ascending order).
Differs from similar A284579 for the first time at n=56, where a(56) = 9, while A284579(56) = 5.
Sequence in context: A064742 A227185 A284579 * A256790 A337225 A256478
KEYWORD
nonn,base
AUTHOR
Andrew Weimholt, Nov 05 2009
STATUS
approved