OFFSET
1,1
COMMENTS
In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.
LINKS
Ryohei Miyadera, Curious Properties of an Iterative Process, Mathsource, Wolfram Library Archive.
Shoei Takahashi, Unchone Lee, Hikaru Manabe, Aoi Murakami, Daisuke Minematsu, Kou Omori, and Ryohei Miyadera, Curious Properties of Iterative Sequences, arXiv:2308.06691 [math.GM], 2023.
FORMULA
Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 793312220 we can get a loop of length 40.
EXAMPLE
This is an reiterative process that starts with 7793312220.
MATHEMATICA
dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 7793312220, 80]
PROG
(PARI) dsf(n) = my(d = digits(n)); sum(i=1, #d, d[i]^d[i]); \\ Michel Marcus, Apr 21 2014
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ryohei Miyadera, Takuma Nakaoka and Koichiro Nishimura, Oct 09 2009
EXTENSIONS
More terms from Michel Marcus, Apr 21 2014
STATUS
approved