login
A166072
Define dsf(n) = A045503(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the decimal digits of n. dsf(809265896) = 808491852 and dsf(808491852) = 437755524,...,dsf(792488396) = 809265896, so these 8 numbers make a loop for the function dsf.
3
809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583
OFFSET
1,1
COMMENTS
In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.
Periodic with period 8.
LINKS
Ryohei Miyadera, Curious Properties of an Iterative Process, Mathsource, Wolfram Library Archive.
Shoei Takahashi, Unchone Lee, Hikaru Manabe, Aoi Murakami, Daisuke Minematsu, Kou Omori, and Ryohei Miyadera, Curious Properties of Iterative Sequences, arXiv:2308.06691 [math.GM], 2023.
FORMULA
a(n+1) = dsf(a(n)).
MATHEMATICA
dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 809265896, 16]
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1}, {809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396}, 24] (* Ray Chandler, Aug 25 2015 *)
CROSSREFS
Sequence in context: A104829 A198173 A204499 * A152156 A017540 A132216
KEYWORD
nonn,base,easy
AUTHOR
Ryohei Miyadera, Satoshi Hashiba and Koichiro Nishimura, Oct 06 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Aug 02 2010
Extended by Ray Chandler, Aug 25 2015
STATUS
approved